DISCOVERY OF "FALSE HIV ELITE CONTROLLERS" AMONG SOUTH AFRICAN BLOOD DONORS

ISBT TTID WP 17 June 2017

Marion Vermeulen, Karin van den Berg, Genevieve Jacobs, Brian Custer, Ronel Swanevelder, Ute Jentsch, Ravi Reddy, Lubbe Wiesner, Gary Maartens and Edward Murphy for the NHLBI Recipient Epidemiology and Donor Evaluation Study-III (REDS-III)

Background

- SANBS screens all donations for HIV, HBV & HCV using ID-NAT in parallel with serology testing
- Although variable, eclipse period from infection acquisition to disseminated viraemia is estimated ~10 days using ID-NAT¹
- Very early initiation of cART is likely to have a beneficial effect on the course of HIV disease and may facilitate HIV Cure Interventions²
- Use of ID HIV antibody and RNA testing of blood donors and the high incidence of HIV infection in SA enables identification of:
 - Donors with very early (Fiebig stage I & II) incident infection (HIV RNA+, Antibody-)
 - Potential Elite Controllers (EC), a group who are able to control virus replications without treatment (HIV RNA-, Antibody+)
 - Confirmed using western blot
 - Definition of an EC is a viral load <50 copies/mL
 - Prevalent HIV infections (HIV RNA+, Antibody+)

¹Lee et al Journal of theoretical Biology 2009

² Barouch & Deeks **Science** 2014; Okulicz **JAMA Intern Med** 2014

Monitoring and Acute treatment of HIV study (MATHS) Objectives:

- Determine Fiebig stage at time of blood donation. For donors identified as being Fiebig stage I or II initiate cART, and ascertain Fiebig stage at the time of therapy initiation
- 2. Establish the size of the peripheral blood viral reservoir at the initiation of cART and at defined time points post cART initiation for donors enrolled in the treatment study
- 3. Conduct a "proof of concept study" to show how blood donors identified as having "hyper-acute" HIV infection by blood testing can be successfully linked to care with the initiation of early HIV treatment

MATHS Study Design

- Enrolment commenced end-October 2015
- Acute (50 RNA+/Ab-) & Recent (25 RNA+/Ab+/Lag recent) HIV infections:
 - Open label, non-randomized treatment study
 - Rapid (<4 weeks post index donation) initiation of approved 3-drug antiretroviral therapy (cART)
- Elite Controllers (N=20)
 - Parallel prospective observational cohort of 20 elite controllers
- 2-year clinical and research follow-up
- Frequent research blood samples for HIV virology and immunology
- Less frequent, large volume leuka- and plasmapheresis for measurement of HIV reservoir

Background

- Loss of "Elite Control" by a MATHS participant
- Anecdotal evidence of Elite Controllers reporting ART and therefore "false EC" while recruiting and enrolling donors into the MATHS cohort study
- Apparent increase in EC over 1-2 years and during a winter incentive campaign

Aim & Methods

Aim

 To understand the extent of the false EC phenomenon and generate hypothesis for its genesis and prevention

Methods

- 211 Potential EC tested for five ARV drugs using qualitative liquid chromatography tandem mass spectrometry (sensitivity 0.02µg/mL)
 - Nevirapine, Efavirenz, Darunavir, Atazanavir, Lopinavir
- Compare the frequency of false EC against blood drive characteristics, donor incentives and the temporal trend of ART rollout in South Africa using chi-square, Fisher exact and trend tests

ART Rollout

Blood Donors

Of 211 Potential Elite Controllers tested, 129 (61%) had evidence of ART and were therefore "False Elite" Controllers.

"False" Elite controllers by donation site and incentives

	False Elites	True Elites	Total
	n=129 (%HIV+)	n=82 (%HIV+)	n=211 (%HIV+)
Donation Site (p=0.14)			
Mobile	116 (1.6)	68 (1.0)	184 (2.6)
Fixed	13 (0.75)	14 (0.81)	27 (1.6)
Donor Incentives (p=0.74)			
Incentive period	26 (2.1)	15 (1.2)	41 (3.3)
Non-incentive period	103 (0.96)	67 (0.62)	170 (1.6)

False Elite controllers by gender and age

	False EC (%HIV+)	True EC (%HIV+)	Total (%HIV+)	
	N=129	N=82	N=211	
Gender (p=0.35)				
Female	95 (1.10)	65 (0.75)	160 (1.85)	
Male	34 (0.73)	17 (0.37)	51 (1.10)	
Age (p=0.03)*				
15-19	10 (0.37)	13 (0.48)	23 (0.84)	
20-25	12 (0.35)	16 (0.47)	28 (0.82)	
26-30	23 (0.91)	12 (0.47)	35 (1.38)	
31-40	58 (2.06)	23 (0.82)	81 (2.87)	
41-50	23 (1.79)	10 (0.78)	33 (2.57)	
>50	3 (0.67)	8 (1.78)	11 (2.44)	

* For age >30 versus <=30

False Elite controllers by race

	False EC (%HIV+) N=129	True EC (%HIV+) N=82	Total (%HIV+) N=211
Race			
Asian		1 (0.72)	1 (0.72)
Black	120 (1.00)	70 (0.59)	190 (1.59)
Coloured	1 (0.23)	1 (0.23)	2 (0.45)
Unallocated	5 (2.45)	3 (1.47)	8 (3.92)
White	3 (0.56)	7 (1.31)	10 (1.88)

Due to the small number of Potential ECs in non black race group we did not analyse for significance

Drugs detected

Drugs	Atazanavir	Darunavir	Efavirenz	Lopinavir	Nevirapine
Number (%)	0	0	111 (86)	7 (5.4)	11 (8.5)

Viraemia in EC's

copies/m L

TND= 0/18 reps; <0.12 set at 0.1 (1/18 reps – poisson derived value 0.12) TND = 0.18 reps; <0.12 set at 0.1

Distribution of viral load in 28 elite controllers plasmas

Determined by probit alalysis from proportion of positive samples on 30 replicate Ultrio assays against DDL HIV subtype B standard dilutions

Modeling the proportion of RBC and FFP transfusions from elite controllers being infectious

Conclusions

- False EC due to undisclosed ART use, represent a large and growing proportion of potential EC in SA blood donors
- False EC status may be associated with older age but not with sex or race
- False EC status is not associated with small incentives or fixed versus mobile collection site
- False EC may seem to be increasing as ART coverage increases in South Africa
- True EC and False EC do still have viremia and therefore pose a risk to blood safety

Way forward

- Enrol False Elite controllers into a qualitative research study to determine
 - Whether donors feel peer pressure at Mobile clinics
 - Whether donors believe they are cured
 - If more education is required at the treatment clinics
 - If donors are test seeking for confirmatory purposes
 - Whether donors donate for incentives/ small gifts
- Test concordant HIV NAT+/antibody+ donors especially those with low viral load - for ART to measure the extent of undisclosed ART usage in that group.

Acknowledgements

Karin van den Berg	Cynthia Nyoni
Genevieve Jacobs	Tinus Brits
Ronel Swanevelder	Ute Jentsch

Coreen Barker Amisha Rama

Rachel Lockyear

Chris McClure Nathan Sikes

Brian CusterMars StoneEdward MurphyMike Busch

South African National Blood Service

Clinical HIV Research Unit (WITS)

Right to Care

RTI

Blood Systems Research Institute and University of California San Francisco

Jennifer Norman

University of Cape Town

REDS-III MATHS is a NHLBI funded project HHSN268201100009I

Impact of early ART treatment and pre-exposure prophylaxis on performance of assays for HIV diagnosis and donor screening

> Michael P. Busch, MD, PhD Blood Systems Research Institute University of California San Francisco

HIV Viremia during early infection

Peak viremia: 10^{6} - 10^{8} gEq/mL

Fiebig Stages of Acute HIV Infection

Data from 17 plasma donors that progressed from NAT positive to WB positive used to construct a relative sequence of reactivity timeline

Adapted from Owen et al J Clin Micro 2008 and Masciotra et al J Clin Virol 2011,2013

Time Until Emergence of HIV Test Reactivity Following Infection With HIV-1: Implications for Interpreting Test Results and Retesting After Exposure

Kevin P. Delaney,¹ Debra L. Hanson,¹ Silvina Masciotra,¹ Steven F. Ethridge,¹ Laura Wesolowski,¹ and Sherry Michele Owen²

¹Division of HIV/AIDS Prevention, and ²Office of the Director, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia

Table 2. Inter-Test Reactivity Intervals of Plasma Specimens

Clinical Infectious Diseases®

HIV Test	Median (Standard Deviation)	95% Confidence Limit
Ag/Ab combo laboratory test		
ARCHITECT HIV Ag/Ab Combo	6.0 (1.14)	3.8, 8.2
BioPlex 2200 HIV Ag-Ab	5.3 (1.81)	1.7, 8.8
GS Combo Ag/Ab EIA	5.3 (2.40)	.6, 10.0
Siemens Combo HIVAg-Ab	6.9 (1.11)	4.7, 9.1
Ag/Ab combo rapid test		
Determine HIV-1/2 Ag/Ab Combo	7.4 (1.35)	4.8, 10.1
Conjugated synthetic peptide labora	tory test (IgG/IgM sen	isitive)
ADVIA HIV 1/O/2 Enhanced	10.4 (2.67)	5.1, 15.6
GS HIV-1/HIV-2 PLUS O EIA	13.3 (1.58)	10.2, 16.4
VITROS Anti-HIV-1 + 2 Assay	12.0 (0.94)	10.1, 13.8
lgG/lgM-sensitive rapid test ^a		
INSTI HIV-1/HIV-2 Antibody Test	14.9 (1.66)	11.7, 18.2
Uni-Gold Recombigen HIV	20.3 (3.53)	13.4, 27.3
Synthetic or recombinant peptide ra	pid screening test (IgC	3 sensitive)
Clearview COMPLETE HIV-1/2	20.2 (2.75)	14.8, 25.6
Clearview HIV 1/2 STAT-PAK	19.5 (2.41)	14.8, 24.2
DPP HIV-1/2	18.9 (1.89)	15.2, 22.6
Multispot HIV-1/HIV-2 Rapid Test ^b	16.8 (1.53)	13.8, 19.8
Oraquick ADVANCE Rapid HIV- 1/2 Antibody Assay	22.9 (4.22)	14.6, 31.2
Reveal G2 Rapid HIV-1 Antibody Test	18.6 (1.31)	16.0, 21.2
Synthetic or recombinant peptide la	poratory screening tes	t (IgG sensitive)
Avioq HIV-1 Microelisa System ^c	19.1 (1.46)	16.3, 22.0
Synthetic or recombinant peptide su (IgG sensitive)	oplemental HIV-1/HIV-2	2 differentiation tes
Geenius HIV-1/2 Ab Supplemental Assay	21.3 (2.68)	16.0, 26.5
Multispot HIV-1/HIV-2 Rapid Test ^b	22.2 (2.67)	17.0, 27.4
Category (number of inclusive tests)	1	
Ag/Ab laboratory (4)	5.9 (1.01)	3.9, 7.9
IgG/IgM-sensitive laboratory (3)	11.9 (1.14)	9.6, 14.1
IgG-sensitive rapid screening (6)	19.5 (1.70)	16.2, 22.8
IgG-sensitive supplemental (2)	21.7 (2.22)	17.4, 26.1
Western blot (viral lysate) (1)	24.8 (3.38)	18.1, 31.4

Estimated median inter-test reactivity interval (TRI), and 95% confidence limits, in days, between Aptima RNA reactivity and immunoassay reactivity. Tests are alphabetically ordered within each test category.

Table 3. Window Periods

Category (No. of Inclusive Tests)	Median (Interquartile Range; Days)	99th Percentile (Days)	
Antibody/antigen laboratory (4)	17.8 (13.0, 23.6)	44.3	
lgG/lgM-sensitive laboratory (3)	23.1 (18.4, 28.8)	49.5	
lgG-sensitive rapid screening (6)	31.1 (26.2, 37.0)	56.7	Density
lgG-sensitive supplemental (2)	33.4 (28.5, 39.2)	58.2	Ď
Western blot (viral lysate) (1)	36.5 (31.0, 43.2)	64.8	

Estimated median, interquartile range, that is, the 25th and 75th percentiles, and 99th percentiles of the window period distribution, the duration of time between human immunodeficiency virus exposure and immunoassay reactivity, in days. Percentiles are means of respective percentiles from 4 computational methods and from all tests of a category of tests. Window period estimates were sums of 10 000 simulated days intertest reactivity interval, using parameters from the observed data (testing of plasma specimens), and 10 000 simulated eclipse period days as graphed in Figure 1.

Abbreviation: Ig, immunoglobulin.

Figure 1. Simulated eclipse period probability density function (PDF) translated from a 3-parameter Weibull prior distribution. Parameters for location, shape, and

July 1998

New Testing Strategy to Detect Early HIV-1 Infection for Use in Incidence Estimates and for Clinical and Prevention Purposes

Robert S. Janssen, MD; Glen A. Satten, PhD; Susan L. Stramer, PhD; Bhupat D. Rawal, PhD; Thomas R. O'Brien, MD, MPH; Barbara J. Weiblen, MS; Frederick M. Hecht, MD; Noreen Jack, MBBS, MPH; Farley R. Cleghorn, MD, MPH; James O. Kahn, MD; Margaret A. Chesney, PhD; Michael P. Busch, MD, PhD

Beyond detuning: 10 years of progress and new challenges in the development and application of assays for HIV incidence estimation

Michael P. Busch^{a,b}, Christopher D. Pilcher^c, Timothy D. Mastro^d, John Kaldor^e, Gaby Vercauteren^f, William Rodriguez^g, Christine Rousseau^g, Thomas M. Rehle^h, Alex Welteⁱ, Megan D. Averill^d, Jesus M. Garcia Calleja^f, for the WHO Working Group on HIV Incidence Assays

AIDS 2010, 24:2763-2771

Fig. 1. Principle of assays that discriminate recent from longstanding HIV infections, based on maturation of HIV-specific antibody responses, for use in cross-sectional incidence estimation. LS-EIA, less-sensitive-enzyme immunoassay.

Fig. 2. Representative testing algorithm incorporating two incidence assays and available clinical data (CD4 count and antiretroviral treatment history) for determination of recent HIV infection status of specimens evaluated for HIV incidence estimation. Assay 1 and assay 2 represent two assays

REVIEW ARTICLE Moving towards a reliable HIV incidence test – current status, resources available, future directions and challenges ahead

G. MURPHY^{1*}, C. D. PILCHER², S. M. KEATING³, R. KASSANJEE^{4,5}, S. N. FACENTE², A. WELTE⁴, E. GREBE⁴, K. MARSON², M. P. BUSCH³, P. DAILEY⁶, N. PARKIN^{6,7}, J. OSBORN⁶, S. ONGARELLO⁶, K. MARSH⁸ AND J. M. GARCIA-CALLEJA⁹ on behalf of the Consortium for the Evaluation and Performance of HIV Incidence Assays (CEPHIA)[†] Foundation for Innovative New Diagnostics, UNAIDS and the WHO Technical Working Group

Fig. 2. CEPHIA incidence assay critical path.

 Table 2. Potential uses for HIV incidence assays

STAGES	CRITERIA	Use	Description of use
Biomarker discovery		1. Incidence estimate for national surveillance	To provide national estimate of incidence; may be part of a broader demographic study
Biomarker	Specific for HIV Associated with recency Useable readout	2. Incidence estimation for programme, prevention or trial planning	To provide incidence estimate in sub-populations for planning, prioritizing, or other instances when an estimate of incidence is required. May often be for only a city or region (e.g. prioritize
proof of concept	MDRI 4 - 24 months FRR <15%, consistent across subtypes Advantages vs existing assays	3. Incidence estimate in key or sentinel populations	programmes or investments, or identify sites for intervention trials) To provide incidence estimates in special sub-population using targeted sampling methods
Assay development	Preliminary data Kit and protocol (SOP) availability	4. Incidence estimation to assess the impact of population-level interventions	To assess the impact of a population-level intervention (e.g. community-level intervention) by comparing incidence before and after the intervention
Qualification	Potential for commercialization	5. Incidence estimate from case-based surveillance	To provide national or regional incidence estimates via case-based reporting of newly identified HIV+ individuals
	MDRI of 4-24 months and FRR not inferior to LAg Training, equipment supplied to independent evaluators	6. Identification of individuals with 'recent' infections for research purposes	Identification of individuals with 'recent' infections for multiple potential applications (e.g. recruitment of recently infected individuals into longitudinal cohort studies)
evaluation	Funding	7. Identification of patients with 'recent' infections for individual patient management	Identification of patients with 'recent' infections for to guide clinical management and/or public health programmes (e.g. selecting therapy, and/or prioritizing contact tracing)
		8. Targeted prevention planning	To provide population-level data on recent infections to enable risk factors analysis or identify hotspots to inform targeted prevention planning (no incidence estimate is obtained)

Reduction in HIV Ab reactivity in EC and Following ART in CEPHIA

Keating et al. JID, in press

HIV Abs in Early/Late Treatment Cohort

LS-VITROS-

Keating et al, JID, in press

HIV Antibody Levels and Avidity Slowly but Steadily Decrease during ART in A5321 Cohort

Sheila et al, in preparation

When is HIV latency established?

Immediate antiviral therapy appears to restrict resting CD4⁺ cell HIV-1 infection without accelerating the decay of latent infection

Nancie M. Archin^{a,1}, Naveen K. Vaidya^{b,c,1}, JoAnn D. Kuruc^a, Abigail L. Liberty^a, Ann Wiegand^d, Mary F. Kearney^d, Myron S. Cohen^a, John M. Coffin^e, Ronald J. Bosch^f, Cynthia L. Gay^a, Joseph J. Eron^a, David M. Margolis^{a,2}, and Alan S. Perelson^{b,2}

^aDepartment of Medicine, University of North Carolina, Chapel Hill, NC 27599; ^bTheoretical Biology and Biophysics Group, MS K710, Los Alamos National Laboratory, Los Alamos, NM 87545; ^cDepartment of Applied Mathematics, University of Western Ontario, London, ON, Canada N6A 5B7; ^dHIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702; ^eDepartment of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111; and ^fHarvard School of Public Health, Harvard University, Boston, MA 02115

Edited by Stephen P. Goff, Columbia University College of Physicians and Surgeons, New York, NY, and approved April 27, 2012 (received for review December 9, 2011)

- HIV latency is established in acute HIV infection
- Latency persists despite early and long-term ART
- Pool of latently infected cells is stable with little to no decay in the presence of long-term ART

HIV DNA Set Point is Rapidly Established in Acute HIV Infection and Dramatically Reduced by Early ART***

Jintanat Ananworanich ^{a,b,c,*}, Nicolas Chomont ^{d,e,1}, Leigh Ann Eller ^{a,b}, Eugene Kroon ^{c,f}, Sodsai Tovanabutra ^{a,b}, Meera Bose ^{a,b}, Martin Nau ^{a,b}, James L.K. Fletcher ^c, Somporn Tipsuk ^c, Claire Vandergeeten ^{e,1}, Robert J. O'Connell ^d, Suteeraporn Pinyakorn ^{a,b}, Nelson Michael ^a, Nittaya Phanuphak ^c, Merlin L. Robb ^{a,b}, on behalf of the, RV217 and RV254/SEARCH010 study groups:

Fig. 1. Plasma HIV RNA of RV217 untreated and RV254 treated acute HIV infection participants. Footnote: The detection limit of HIV RNA was either 1.7 or 1.3 log₁₀copies/ml.

Fig. 2. Total and integrated HIV DNA and 2-LTR circles in peripheral blood mononuclear cells of Fiebig I to IV RV217 untreated and RV254 treated acute HIV infection participants. Footnote: PBMCs: peripheral blood mononuclear cells.

Commentary

The Benefits of Early Antiretroviral Therapy for HIV Infection: How Early is Early Enough?

Sulggi A. Lee, Steven G. Deeks*

University of California San Francisco, CA, USA

http://dx.doi.org/10.1016/j.ebiom.2016.07.024.

The size of the expressed HIV reservoir predicts timing of viral rebound after treatment interruption

Association of pre-ATI levels of CA-RNA, CA-DNA, and residual viremia with timing of viral rebound. Levels of pre-ATI

Seroreversion in Subjects Receiving Antiretroviral Therapy during Acute/Early HIV Infection

C. Bradley Hare,¹ Brandee L. Pappalardo,⁴ Michael P. Busch,⁴ Annika C. Karlsson,² Bruce H. Phelps,⁵ Steven S. Alexander,⁶ Christopher Bentsen,⁷ Clarissa A. Ramstead,¹ Douglas F. Nixon,² Jay A. Levy,³ and Frederick M. Hecht¹

¹Positive Health Program, ²Gladstone Institute of Virology and Immunology, and ³Department of Medicine, University of California, San Francisco, and ⁴Blood Systems Research Institute, San Francisco, and ⁶Chiron Corporation, Emeryville, California; ⁶Ortho Clinical Diagnostics, Raritan, New Jersey; and ⁷Bio-Rad Laboratories, Redmond, Washington

Clinical Infectious Diseases 2006; 42:700–8

Timing is Everything - Shortcomings of Current HIV Diagnostics in the Early Treatment Era

Keating SM, Pilcher CD, Busch MP: Clin Infect Dis. 2016.

Figure 1. After HIV infection, p24 antigen and IgM and IgG antibody seroconversion occur which are progressively detected by 4th, 3rd or 2nd generation assays over the weeks post-infection. Diverse antigenspecific responses can be differentially detected during this period by western blot (WB) and other confirmatory assays. Sustained antigenic stimulation is required for maturation and maintenance of these antibody responses. Early treatment with ART aborts the development of antibodies if treatment is initiated very early and subsequent seroreversion may occur if treatment is initiated shortly following seroconversion, making it difficult to detect or confirm HIV infection by standard diagnostic tests.

Initiation of Antiretroviral Therapy During Acute HIV-1 Infection Leads to a High Rate of Nonreactive HIV Serology

Mark S. de Souza,^{1,2,3} Suteeraporn Pinyakorn,^{4,5} Siriwat Akapirat,⁶ Supanit Pattanachaiwit,² James L. K. Fletcher,¹ Nitiya Chomchey,¹ Eugene D. Kroon,^{1,2} Sasiwimol Ubolyam,⁷ Nelson L. Michael,^{5,8} Merlin L. Robb,^{4,5} Praphan Phanuphak,^{1,2} Jerome H. Kim,⁹ Nittaya Phanuphak,^{1,2} and Jintanat Ananworanich^{1,4,5}; for the RV254/SEARCH010 Study Group

¹South East Asia Research Collaboration with Hawaii (SEARCH), and ²Thai Red Cross AIDS Research Centre, Bangkok, Thailand; ³Cooper Human Systems, Cambridge, Massachusetts; ⁴Henry M. Jackson Foundation for the Advancement of Military Medicine, and ⁵United States Military HIV Research Program, Bethesda, Maryland; ⁶Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, United States Component, and ⁷HIV Netherlands Australia Thailand Research Collaboration, Bangkok; ⁸Walter Reed Army Institute of Research, Silver Spring, Maryland; and ⁹International Vaccine Institute, Seoul, South Korea

Results. Participants (N = 234) initiating ART at a median of 19 days (range, 1–62 days) from HIV exposure demonstrated different frequencies of reactivity prior to and following 24 weeks of ART depending on the IA. Third-generation IA nonreactivity prior to ART was 48%, which decreased to 4% following ART (P < .001). Fourth-generation IA nonreactivity was 18% prior to ART and 17% following ART (P = .720). Negative WB results were observed in 89% and 12% of participants prior to and following 24 weeks of ART, respectively (P < .001). Seroreversion to nonreactivity during ART was observed to at least one of the tests in 20% of participants, with fourth-generation IA demonstrating the highest frequency (11%) of seroreversion.

Absence of Serological Response Following Early Treatment of Acute HIV Infection

Manak M¹, J Malia², A Shutt¹, S Akapirat³, D Colby⁴, N Chomchey⁴, LA Eller¹, JH Kim², J Ananworanich¹, and S Peel²

¹MHRP HJF, Silver Spring, MD; ²MHRP WRAIR, Silver Spring, MD; ³AFRIMS, Bangkok, Thailand; ⁴SEARCH, TRCARC, Bangkok, Thailand

HIV Diagnostics Conference Mar 22, 2016 Atlanta, GA

In press, Clinical Infectious Diseases

Walter Reed Army Institute of Research

Background

Initiation of HAART at very early times in acute HIV infection (AHI) can reduce viral load to below detectable levels.

The reduction of plasma viremia may reduce HIV-1 immune response and emergence of HIV diagnostic markers in blood.

HIV infected infants who initiated treatment before 12 weeks of age frequently become HIV seronegative by 2 years of age, but have not cleared virus from latent reservoirs.

Examine evolution of HIV serological markers following early HAART Therapy

Study Populations and Assays

Evolution of HIV Markers in two Acute HIV Infection Cohorts RV217 - Untreated population RV254 – Initiated HAART Treatment during AHI
Viral markers were followed at various times post first infection

RNA Screen – Aptima (Hologic) Viral Load – (Abbott m200)

p24 Ag 4th Gen EIA 3rd Gen EIA Supplementary Bio-Rad p24 Ag (RUO) Bio-Rad Ab/Ag Combo Bio-Rad EIA 1/2/O Bio-Rad Western blot Bio-Rad MultiSpot
3rd Gen EIA signal in Untreated HIV Volunteers

Untreated Volunteers were Reactive by 3rd Gen EIA by 2 weeks with s/co >14.

Once seroconversion took place, all samples remained EIA Reactive throughout subsequent testing periods

3rd Gen EIA signal in Individuals Treated at Fiebig I

- 3 (15%), Low
- 3 (15%) Medium
- 3 (15%) High.

3rd Gen EIA signal in Individuals Treated at Fiebig II

Treated at F	iebig II $N = 30$
2 (6.7%)	NR
8 (26.7%)	Low
14 (46.7%)	Medium
6 (20%)	High

3rd Gen EIA signal in Individuals Treated at Fiebig III/IV

Treated at Fiebig III/IV	N = 20
1 (5.0%) NR	
5. (25.0%) Low	
6. (30.0%) Medium	
8 (40%) High.	

Delay/Reversion of 3rd Gen EIA following early HAART

EIA Reactivity by Wk 24

HAART treatment at Fiebig I - IV results in decreased seroreactivity at later times.

				3rd Gen EIA Reactivity (s/co)						
		Ν	NR (<1.0)		Low (1 - 50		Med (6 - 12)		High (>12)	
Untreated		24	0	0%	0	0%	0	0%	24	100%
	Fiebig I	20	11	55.0%	3	15.0%		15.0%	3	15.0%
Treated	Fiebig II	30	2	6.7%	8	26.7%	14	46.7%	6	20.0%
	Fiebig III/IV	20	1	5.0%	5	25.0%	6	30.0%	8	40.0%

Conclusions

In untreated individuals, serological markers evolve with time post infection: 4th Gen EIA (Ag/Ab Combo) reactive within 7 days, 3rd Gen (Ab) within 14 days, and WB Pos within 24 days post infection.

Treatment at Fiebig I blocks subsequent emergence of anti-HIV 72.7% of individuals remained serologically HIV negative by week 24

- Treatment at Fiebig II caused delay or decrease of serological markers, 68.6% of individuals at Wk 12, and 70.7% by Wk 24.
- Treatment at Fiebig III and IV results in delay/decrease in seroreactivity in 60% participants

Western Blot reactivity is significantly delayed/reduced 45% of individuals had IND or Neg WB even after Wk 12 and 24. Caution is urged in interpretation of negative serological signal in

individuals on early HAART as absence of infection.

HIV Seroincidence Panel Project (SIPP)

Timepoints of SIPP specimens with ARV treatment								Days from EDDI to ART
		Days fr	om ART Ini	itiatior	n (Time 0)			initiation
-700	-500	-300	-100 0	100	300	500	700	
								-5
							-SC0	12 20
								P109 26
			***	*****		→	→ SCO	16 29
			жж	ююкж	ж ж	 *	-x- SCO	03 39
							LSS:	102 41
			+++			+	sco	10 44
				• • • • •			ISCF	P106 45
				00000	× × ×	<u> </u>	→ ISCF	P108 50
			•••	• • • •		.		17 54
							ISCF	P110 55
			-				-t-LSS:	104 63
			** **	~ 	~~~~	~ × ×	→ → ISCF	P107 66
				010101030	** *		- *- LSS:	103 83
							SC0	15 93
					+		→SC0	18 * 214
				-			- SCO	04 411
-							ISCF	P105 686
	•			1				19
							-LSS:	101
			▲				-A-SCO	02
	>000()0	×× × →	\leftrightarrow		ese specimen collected prio		→ SC0	05
	ж	XXX XXX XXX X	* * *		T initiation.	N 10	SCO	20
		000-00-0	-		ost recent		SC0	21
		+++++++	++++	timepoint has been arbitrarily set to -100			SC0	22
	> >>>>>==				ys for purpose is chart)	es of	→ SC0	23
							SCO	24
		****						25
]			- SCO	
					*A	lso includes on	e timepoint 1356	days after ART initiation

The Effect of Oral Pre-Exposure Prophylaxis (PrEP) on the Progression of HIV-1 Seroconversion: The Known Unknowns

Deborah Donnell PhD, Eric M Ramos MD MSc, Connie Celum MD MPH, Jared M Baeten MD PhD, Joan Dragavon MLS, Jordan Tappero MD MPH, Jairam R Lingappa MD PhD, Allan Ronald MD, Kenneth Fife MD PhD and Robert Coombs MD PhD FRCPC for the Partners PrEP Study Team

> Centers for Disease Control, Indiana University University of Manitoba and University of Washington

Background

- Six randomized clinical trials of tenofovir disoproxil fumarate (TDF) alone or in combination with emtricitabine (TDF/FTC) [TRUVADA®] used as pre-exposure prophylaxis (PrEP) for HIV-1 infection have shown a reduced risk of HIV-1 acquisition between 44% and 87%
- Success of PrEP is associated with antiretroviral drug adherence
- Primate model suggests that PrEP reduces viral load associated with break-through of SHIV_{SF162P3} infection but has little impact on the timing of seroconversion or neutralizing antibodies; however, maturation of antibody avidity is delayed

(Curtis et al., *J Acquir Immune Defic Syndrome* 2011;57:355-362)

Background (cont'd)

- It is biologically plausible that PrEP could affect the appearance and concentration of biomarkers of acute HIV-1 infection (AHI) – HIV-1 RNA, p24 antigen, HIV-1 antibodies – i.e., Fiebig Stage
- PrEP could result in the delay or attenuation or perhaps even skipping the detection of expected biomarkers of AHI
- <u>These potential effects of PrEP would have</u> <u>implications for the routine laboratory diagnosis of</u> <u>acute/early HIV-1 infection</u>

Partners PrEP study

- Enrolled 4,747 HIV serodiscordant couples in Kenya and Uganda between July 2008 and November 2010 (Baeten et al., *Lancet Infect Dis* 2014; 14:1055-64)
- Randomized 1:1:1 to FTC/TDF:TDF:Placebo
- Stopped early for efficacy
 - re-randomized Placebo 1:1 to FTC/TDF:TDF after DSMB meeting July 2013
- N = 138 seroconversions observed

Specific Aims

- <u>Hypothesis</u>: PrEP will delay the expected biomarker-defined Fiebig stages of acute/recent/early HIV-1 infection for human clinical trial subjects infected with non-clade B virus
 - Assess whether time to progress through Fiebig stages was affected by PrEP
 - Assess whether virologic or antibody response was affected by PrEP
 - Assess an association of PrEP with a <u>delay in detection</u> of seroconversion by the site versus the central laboratory

Seroconverter characteristics (N=138)

	PrEP	Placebo
	(N = 67)	(N = 71)
Male	27 (40%)	37 (52%)
Viral load of partner (median RNA log10 copies/mL)	4.33	4.43
Age (median, IQR)	31	30
Infected at Randomization	9 (14%)	6 (8%)
No site HIV test for >100 days prior to first HIV-infected	9	0
visit		
Time to detect seroconversion at site*	N = 58	N = 71
0 days	21 (36%)	36 (51%)
Within 100 days	27 (47%)	31 (44%)
>100 days	10 (17%)	4 (6%)

*Time from first HIV-infected sample to site detection of seroconversion

28APR17

N=138 (113 included for analysis)

Exclusion of 25: 16 had no HIVuninfected samples; 9 had >100 days with no site HIV test

HIV-1 RNA level for all samples during seroconversion

28APR17

HIV-1 antibody response was not affected by PrEP

28APR17

Time between first HIV-infected sample tested positive by <u>Central Laboratory</u> and <u>Site</u> detection of seroconversion before and after 90 days (N=129)

Summary

- PrEP during seroconversion
 - Slightly slower progression through Fiebig stages
 - Modest decrease in viral load
 - Some participants had delayed seroconversion
- Antibody response not changed by PrEP
- Regardless of PrEP, rapid tests were not highly sensitive for detection of acute/early infection

Antigen/Antibody HIV Screening Tests are Crucial for Pre-Exposure Prophylaxis Programs Delaugerre et al. JID in press

- 488 high-risk MSM in IPERGAY Trial (949 pys)
- 31 diagnosed with HIV infection (Architect Ag/Ab Combo)
 - 13 infected at screening or at randomization visit
 - 19 acquired infection during PREP monitoring (q1 month)
 - 16 placebo; 2 TDC/FTC; one during open phase;
 - Prior samples tested for RNA and 2 positive
- Sensitivity of Ag/Ab combo assays:
 - EIA 4G Architect and BioPlex: 83% (95% CI: 76-99%)
 - VIKIA: 54% (34-72%)
 - AUTOTEST: 50% (31-69%)
 - ALERE: 78% (59-91%)

Acknowledgements

BSRI Sheila Keating Mila Lebedeva Dylan Hampton Celine Chang Mars Stone Mohamed Mohsen Satish Pillai

<u>CDC</u>

Kelly Curtis Michelle Owen

<u>NHLBI</u> Simone Glynn Steve Kleinman

Ŵ

Public Health

England

SACEMA

Alex Welte Eduard Grebe

Public Health England Gary Murphy

UCSF Chris Pilcher Steve Deeks Peter Bacchetti Sulggi Lee Rick Hecht Shelley Facente Kara Marson

BILL& MELINDA GATES foundation

University of California San Francisco

<u>ACTG</u> Raj Gandhi Jonathan Li Ron Bosch John Mellors Bob Coombs

WRAIR MHRP

Mark Manak Sheila Peel

CEPHIA

Fiebig Staging Laboratory Methods (after Fiebig et al., *AIDS* 2003; 17:1871-79)

