Babesia in People's Republic of China

EM Bloch, H Shan, M He, Y Líu, J Wang, L Tonnettí, DA Leíby

ISBT Infectious Working Party- Parasite Subgroup Dubai, 3rd September 2016

Evan M Bloch, M.D., M.S. Assistant Professor Associate Director, Transfusion Medicine Johns Hopkins University Department of Pathology

Babesiosis: an emerging infectious disease

- Babesiosis is the clinical illness that follows infection with Babesia species
 - tick-borne protozoan parasite
 - Intra-erythrocytic, morphologically similar to malaria
 - Over 100 species that infect vertebrate hosts
- Overwhelming **majority** of cases caused by *B.microti*
 - *B.microti* widely endemic Northeast and Upper Midwestern United States
 - Limited global surveillance
- Clinical
 - Mild febrile illness: immunocompetent
 - Severe disease in selected patient subsets i.e. immunocompromise, age, asplenia
 - hemolytic anemia, renal-, cardiorespiratory failure and death

Over-representation of high risk subsets among transfusion recipients Associated fatality rate with TTB → 18%

Transfusion Transmitted Babesiosis (TTB) in the United States

Increase in naturally acquired and TTB

- Non-seasonal and not geographically restricted

- Total of 205 cases of TTB since 1979 with 32 fatalities
 - Likely undercounts cases
- Transfusion transmissible via ANY RBC containing product
 - liquid stored or frozen deglycerolized RBCs
 - whole blood-derived platelets (n=4)

• Tolerates standard storage and processing

- Refrigeration
- Leukoreduction: many cases
- Irradiation: at least 10 cases

PERCEPTION

Babesiosis perceived to be confined to the US

Babesia and International Blood banking

- Most ubiquitous genus of parasite
 - diverse geography and animal vectors
- B. microti poses greatest transfusion risk
 - Cases of *B. microti* and *B. microti*-like infections have been reported in America, Europe and Asia Pacific
- Growing recognition and improved diagnostics
 - increase in surveillance and hemovigilance

Babesia in China

- Babesia has been demonstrated in China
 - Northeast^{1,2} and Southwest China³ \rightarrow malaria endemic in the latter
 - Local reports of Babesia microti in Chinese literature
 - Historical reporting of Lyme disease in Heilongjiang⁴ (shared vector with Babesia)

Babesia in Asia

- One B. *microti* surveillance study in Mongolia⁵
 - 7% seroprevalence
 - 3% PCR positivity
 - Neighboring PRC

Uncertain risk to Chinese blood supply

1. Zhou X, Xia S, Huang JL, Tambo E, Zhuge HX, Zhou XN. Human babesiosis, an emerging tick-borne disease in the People's Republic of China. *Parasit Vectors* 2014; **7**: 509.

2. Jiang JF, Zheng YC, Jiang RR, et al. Epidemiological, clinical, and laboratory characteristics of 48 cases of "Babesia venatorum" infection in China: a descriptive study. *Lancet Infect Dis* 2015; **15**(2): 196-203.

- 3. Zhou X, Li SG, Wang JZ, et al. Emergence of human babesiosis along the border of China with Myanmar: detection by PCR and confirmation by sequencing. *Emerg Microbes Infect* 2014; **3**(8): e55.
- 4. Ai CX, Wen YX, Zhang YG, et al. Clinical manifestations and epidemiological characteristics of Lyme disease in Hailin county, Heilongjiang Province, China. *Ann N Y Acad Sci* 1988; **539**: 302-13.
- 4 Hong SH, Anu D, Jeong YI, et al. Molecular detection and seroprevalence of Babesia microti among stock farmers in Khutul City, Selenge Province, Mongolia. *Korean J Parasitol* 2014; **52**(4): 443-7.

Specific Aims

RESEARCH QUESTION

1. What is the seroprevalence of B. *microti* in a sample of Chinese blood donors?

2. What is the rate of Babesia parasitemia as evidenced by detectable Babesia DNA in a sample of Chinese blood donors?

SPECIFIC AIMS

1a. To determine the B. microti seroprevalence in a sample of blood donors in People's Republic of China (PRC)

1b. To construct a laboratory sample set to enable molecular evaluation for evidence of Babesia parasitemia (*B. microti, Venatorum, divergens* and *duncani* DNA) in a sample of Chinese Blood donors*

*Molecular testing to be conducted using supplemental funding support

People's Republic of China Site Selection

Collections in **Heilongjiang** (Babesia has already been demonstrated) Testing at **Institute of Blood Transfusion in Chengdu**

Study Design and Methods

Pilot Study (n=1000-2000)

- Routine sample collection from community blood donors
 - Under extant donor consent
- Samples processed on-site and stored pending shipment
- Deidentified samples sent to IBT in Chengdu for batched testing
 - **IFA** (prepared at ARC) to detect antibodies against B. *microti*
 - Slides shipped to PRC
 - Aliquots saved on seroreactive donors for molecular testing

Eligibility

Inclusion criteria:

 All community blood donors who present during the enrollment period (red blood cells or whole blood)

Exclusion:

- Those individuals who do not meet eligibility criteria for community blood donation.
- Direct or autologous blood donors.
- Apheresis platelet and plasma donors

Ethics

- IRB application underway
- Standard donor consent
- Batched deidentified testing: No notification and deferral
 - -The study reagents (e.g. IFA slides) are not SDA approved (FDA equivalent in China) → may only be used for research purposes.
 - -Consistent with current, routine practice in PRC
- Clinical interpretation limited
 - -Need ancillary testing (blood smear, PCR and clinical history)
 - E.g.. Seroreactivity present in past exposure with resolution and active parasitemia
- Molecular testing planned in the future
 - Current study lacks the resources for real time ancillary measures such as PCR/TMA

Limitations

- Infrastructure: Dr. Hua Shan has a longstanding research program in PRC through REDS-III International and IBT.
- Testing and QC: Testing performed locally in China at IBT
- Sample size, site selection, funding and bias:
 - The sample size determined by available funding.
 - Sites not broadly representative → selected given probability of tick bone infection (intentional selection bias)
 - Site selected rural areas, there is potential for population migration, which could dilute out risk → detracts from the ability to identify high-risk areas
- Interpretation of test results:
 - IFA ONLY that is specific for B. microti
 - -limited serological cross-reactivity between Babesia species,
 - Unlikely to capture other species of Babesia (e.g. B. venatorum), which have been reported in PRC
- Seasonality:
 - Naturally acquired Babesiosis (i.e. tick-bite) is seasonal but seroreactivity
 ± parasitemia is observed throughout the year

Conclusions and Future directions

New tools

- Serology
 - -AFIA (Immugen) and ELISA (Immunetics) for B. microti
- Molecular
 - -TMA (Hologic, Inc)→4 species
- Antigen Panels (FDA)
- Pathogen Reduction
 - -Mirasol (Terumo)
- Next Steps
 - -IRB approval pending

Future directions

- Broader surveillance locally as well as outside of the US→scope for collaboration
- If Babesia is present → recipient tracing studies

Food and Drug Adminstration (FDA) David Leiby

Stanford University Hua Shan

ISBT Parasite Subgroup

Institute of Transfusion, Chinese Academy of Medical Sciences He Miao Yu Liu Jingxing Wang

American Red Cross Laura Tonnetti

Acknowledgements

Funding International Society of Blood Transfusion